V Applications
Auctions for the Safe, Efficient, and Equitable Allocation of Airspace System Resources

Michael Ball, George L. Donohue, and Karla Hoffman

20.1 Introduction

Most countries attempt to design their air transportation system so that it is economically viable, safe, and efficient. As the system evolves, changes are necessary to assure that these goals continue to be met. Although air transportation in the United States has a comparable safety record to that of automobile travel (on an exposure to risk time basis, see Royal Society 1992), the margin of safety is slowly eroding under the demands for more enplanement opportunities. The 1978 deregulation of the U.S. route structure was intended to increase competition within the airline industry and thereby improve efficiency, decrease cost to travelers, and expand the overall flying opportunities. This policy initially provided increased enplanement opportunities at reduced prices because there was sufficient capacity in the system to allow such growth. However, the current policies and procedures do not produce a similar effect in a capacity-limited system. In fact, these policies impede the need to build additional airports and overhaul the technology both within air traffic control and on airplanes. Without such expansion, more system elements are likely to become capacity limited. In such a system it is essential to use system resources efficiently. We therefore provide suggestions for mechanisms both to expand the capacity and to assure that the current, limited capacity is used both safely and efficiently.

As the U.S. National Air Transportation System (NATS) becomes highly capacity constrained along multiple dimensions, it requires feedback mechanisms that can react along multiple time scales to adjust system behavior (Fan and Odoni 2002). Today, more than a quarter of a century after airline deregulation in 1978, strategic airspace management exercises little or no control over the number of aircraft that are scheduled to land and depart from various airports. It can only react when the system is overloaded. Thus, the U.S. airlines implicitly are responsible for setting constraints on airport operations as part of their scheduling process. The policies of the U.S. Department of Transportation (DOT) and the Federal Aviation Administration (FAA) effectively encourage these airlines to overbook and then cancel or delay flights, leaving
the system regularly in crisis mode, with re-scheduling the norm rather than the ex-
ception. Similarly, regional governments that wish to determine their demographic
growth patterns are powerless to shape, or even to suggest, how the airspace in their
region is used. The driving forces behind this chapter are two questions: what forces
led to this situation, and what policy changes might be made to improve the U.S. na-
tional air transportation system crisis?

We begin by providing a description of the history of the U.S. aviation system and
then proceed to explain how market-clearing mechanisms might be able to rectify
many of the shortcomings of the current system (see Mineta 1997 and the Commiss-

20.1.1 History of U.S. Aviation

From 1938 to 1978, the Civil Aviation Board (CAB) managed the nation’s air transpor-
tation route (and industry) structure (Gleimer 1996). Many economists felt this admin-
istrative process did an inefficient job of providing transportation services (Rochester
1976; Preston 1987). Figure 20.1 shows how the growth rate of revenue passenger
miles (RPMs), normalized by Ground Delay Program, was stagnating just prior to
1978 (data taken from DOT/BTS 2001). Prior to 1978, air travel was relatively expensive
and considered by many to be only for the upper echelons of society. The 1978 dereg-
ulation of the airline industry led to a decrease in prices and a dramatic increase in indus-
try productivity and frequency of service. Figure 20.2 illustrates how deregulation
in both the United States and Europe initially increased airline productivity (Alamdari and Morrel 1997), even though FAA productivity did not change (with the exception of the effect caused by the air traffic controllers strike in 1981). However, after 1990, there was a leveling off of airline productivity (Donohue 2002). Some factors limiting growth include the lack of incentives to adopt new technology and the political inability to add new airport infrastructure; and an inevitable rise in queuing delays occurred as the system approached the maximum demand to capacity ratio (Donohue and Shaver 2000).

20.1.2 Airport Capacity and Slot Controls

Even prior to 1978, however, some airports were already congested. Four airports had been arrival slot controlled since 1968 under the high density rule (HDR): New York’s Kennedy (JFK) and LaGuardia (LGA), Chicago O’Hare (ORD), and Washington’s (Reagan) National (DCA).

Today, the air transportation situation looks very different than it did in 1978. Many U.S. airports are becoming scheduled at levels that exceed the FAA’s estimate of a maximum safe operational rate (DOT/BTS 2001; Haynie 2002). The major domestic U.S. air carriers use the hub-and-spoke system, which brings passengers from smaller cities to
hubs that will then transport them in an economical way to their final destination. Hub operations tend to concentrate very large numbers of flight arrivals and departures over short periods. In some cases, airlines maintain near monopoly control over hub airports so that newer airlines face significant barriers to entry into these airports.

On April 5, 2000, the semi-deregulation of the slot controls went into effect with the enactment of the AIR-21 bill (Federal Register 2000), which among other things directed the DOT to eliminate totally slot controls at the four U.S. HDR airports by 2007, and to increase immediately the number of slots allocated for regional service at LaGuardia. This act led to the immediate and extreme congestion of air traffic activity at LaGuardia (Fan and Odoni 2002). Strong “network effects” meant that the LaGuardia delays induced additional delays throughout the NATS.

LaGuardia has been arrival slot controlled (approximately thirty-two arrivals per runway per hour) since 1968, due to concerns about congestion and community noise at that airport. These slot controls were maintained even after the Civil Aviation Board was abolished in 1978. Figure 20.3 shows the scheduled number of flights at LaGuardia in 2000. The schedule consists of both arrivals and departures in fifteen-minute intervals from 7 am to 10 pm. LaGuardia has one arrival runway and one orthogonal crossing departure runway. The FAA officially considers the maximum safe level of operations under favorable weather conditions to be forty arrivals and forty departures per hour (i.e., ten arrivals per fifteen-minute epoch) under visual conditions. Under reduced visual conditions (instrument flight rules, or IFR), this airport is supposed to

![Figure 20.3](image-url)

Figure 20.3
LaGuardia scheduled arrivals vs. FAA estimate of 8–10/15 min.
be reduced to thirty-two arrivals and thirty-two departures per hour (i.e., eight arrivals per fifteen-minute epoch). Figure 20.4 shows that the actual operational rates under the more restrictive, and slightly more hazardous IFR conditions frequently exceed the (thirty-two, thirty-two) rate (DOT/BTS 2001). Section 20.2.1 will show that this rate was set by runway occupancy time (ROT) considerations and not aircraft wake vortex separation standards, which are more restrictive. The wake vortex problem was unknown in 1968, when most commercial aircraft were of medium size. With the introduction of both wide-body aircraft (heavy) and small regional jets (RJs) in a highly dynamic mixture, this safety problem is of growing concern (Haynie 2002).

The fact that there are two different capacity levels, one for good weather conditions and another for inclement conditions, further complicates the process of scheduling. Also, FAA regulated separation rates change depending upon whether a small aircraft follows a large aircraft (in which case the separation must be larger), due to aircraft wake vortex encounter concerns. These alternative landing and takeoff separation rules are quite complex and are not considered in the FAA determination of the maximum number of scheduled operations.

20.1.3 Scheduling Practices

A question naturally arises: Why do the airlines schedule operations that exceed the safe departure/arrival rate that an airport can support, thus generating excessive flight delays, cancellations, and loss-of-separation violations? The answer is competition. If airline A acts responsibly and does not increase its schedule at a congested airport, it
will have voluntarily provided another airline with the opportunity to schedule more flights at that airport. Conversely, if airline B decides to increase its schedule in an attempt to increase city pair options and flight frequency (but in reality only increasing congestion and delay for all airlines), airline A may lose market share. Under policies currently in effect, if scheduled flights at that airport are, at some time in the future, legislatively or procedurally reduced through re-regulation, then the airline with the greatest number of scheduled flights is likely to argue and receive more of the available flights. Thus, the risk is not only the reduction of current market share, but also the risk of a permanent market share reduction. In addition, at an airport not dominated by a single carrier (e.g., LaGuardia), when an airline adds another flight the delay experienced by that flight may be small relative to the total delay to other flights caused by that additional flight. Thus, only a small portion of the “delay cost” of adding the flight may be internalized by the initiating airline.

LaGuardia may be the extreme case, but many U.S. airports and airlines are experiencing similar situations. Table 20.1 shows the demand to capacity ratio of twenty major U.S. airports. The demand/capacity (D/C) ratio is based upon FAA computed good weather capacity calculations and measured average operational rates. When the D/C ratio approaches 1, queuing theory predicts that the delay will grow exponentially.

20.1.4 Impact of Level of Competition

We now view the congestion issue relative to a measure of competition at a given airport. The Herfindahl-Hirschman Index (HHI) is a measure of industry competition. Higher HHI values indicate more concentration of business activity among fewer participants and thus less competition. According to Cooper (2000), studies of the hub system within the United States have shown that fare revenues are higher on average for trips to and from major hub airports, with a few concentrated hub airports showing significant premiums over a decade; also, the higher premiums are realized by the dominant carrier in that hub, whereas fares charged by the other carriers in that hub are similar to the fares charged in less concentrated airports. The hub airports that have a dominant carrier typically have a high HHI.

One could argue, on a theoretical basis, that the more competition at an airport, the greater tendency there would be to over-schedule (i.e., monopolists will totally internalize the cost penalty of the delays they cause themselves and therefore not over-schedule). Thus, under current procedures, from the perspective of driving down prices, one would like competition, but from the perspective of keeping congestion at a reasonable level one would like to discourage competition but only if the monopolist would internalize all delay costs and therefore operate at the optimum delay value. Unfortunately, the data in table 20.1 does not support this hypothesis. Airports with both high market concentration (Atlanta) and low market concentration (Newark and LaGuardia) are experiencing similar delays. Even the current slot controlled airports are
Table 20.1
Airport operations/year vs. delays, competition and demand management

<table>
<thead>
<tr>
<th>City</th>
<th>Airport</th>
<th>Operations per year (in thousands)</th>
<th>Delays > 15 mins. per thousand</th>
<th>HHI Index</th>
<th>Demand to Capacity</th>
<th>Slot Controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaGuardia</td>
<td>LGA</td>
<td>392</td>
<td>156</td>
<td><1800</td>
<td>.68</td>
<td>yes</td>
</tr>
<tr>
<td>Newark</td>
<td>EWR</td>
<td>457</td>
<td>81</td>
<td>3600</td>
<td>.66</td>
<td>no</td>
</tr>
<tr>
<td>Chicago</td>
<td>ORD</td>
<td>909</td>
<td>63</td>
<td>3200</td>
<td>.72</td>
<td>yes</td>
</tr>
<tr>
<td>San Francisco</td>
<td>SFA</td>
<td>431</td>
<td>57</td>
<td>3500</td>
<td>.67</td>
<td>no</td>
</tr>
<tr>
<td>Philadelphia</td>
<td>PHL</td>
<td>484</td>
<td>45</td>
<td>3100</td>
<td>.67</td>
<td>no</td>
</tr>
<tr>
<td>Kennedy</td>
<td>JFK</td>
<td>359</td>
<td>38</td>
<td><1800</td>
<td>.42</td>
<td>yes</td>
</tr>
<tr>
<td>Atlanta</td>
<td>ATL</td>
<td>913</td>
<td>31</td>
<td>5500</td>
<td>.78</td>
<td>no</td>
</tr>
<tr>
<td>Dallas-Ft Worth</td>
<td>DFW</td>
<td>866</td>
<td>24</td>
<td>4500</td>
<td>.52</td>
<td>no</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>LGA</td>
<td>784</td>
<td>22</td>
<td><1800</td>
<td>.78</td>
<td>no</td>
</tr>
<tr>
<td>Dulles</td>
<td>IAD</td>
<td>480</td>
<td>20</td>
<td>2700</td>
<td>.54</td>
<td>no</td>
</tr>
<tr>
<td>St. Louis</td>
<td>STL</td>
<td>484</td>
<td>18</td>
<td>3800</td>
<td>.72</td>
<td>no</td>
</tr>
<tr>
<td>Detroit</td>
<td>DTW</td>
<td>554</td>
<td>18</td>
<td>3600</td>
<td>.53</td>
<td>no</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>MSP</td>
<td>522</td>
<td>13</td>
<td>4500</td>
<td>.68</td>
<td>no</td>
</tr>
<tr>
<td>Seattle</td>
<td>SEA</td>
<td>445</td>
<td>11</td>
<td><1800</td>
<td>.71</td>
<td>no</td>
</tr>
<tr>
<td>Baltimore</td>
<td>BWI</td>
<td>315</td>
<td>7</td>
<td>1900</td>
<td>.42</td>
<td>no</td>
</tr>
<tr>
<td>Charlotte</td>
<td>CLT</td>
<td>460</td>
<td>6</td>
<td>5200</td>
<td>.52</td>
<td>no</td>
</tr>
<tr>
<td>Pittsburgh</td>
<td>PIT</td>
<td>448</td>
<td>4</td>
<td>5300</td>
<td>.47</td>
<td>no</td>
</tr>
<tr>
<td>Denver</td>
<td>DEN</td>
<td>528</td>
<td>2</td>
<td>4200</td>
<td>.41</td>
<td>no</td>
</tr>
</tbody>
</table>
experiencing high delays because they are operating near the maximum capacity level. If the current slot controls on these high demand airports expire in 2007, they will undoubtedly become even more congested, as seen at LaGuardia in 2001. This argues for the need for slot allocation measures.

20.1.5 Reduction in Average Aircraft Size
The mixture of aircraft types has changed significantly in recent years. Airlines are moving toward flying smaller aircraft for several reasons, including lower labor costs, higher average load factors, ability to provide higher frequency service to a given market, fuel efficiency, aircraft maintenance costs, and so on. Each aircraft arrival or departure consumes approximately the same amount of airport capacity. Thus, as average aircraft size decreases, airspace throughput in terms of passengers decreases. Hansen (2002) noted that 31 percent of the daily flights into Los Angeles International airport (LAX) in 1998 provided only 8 percent of the seats available for passenger enplane-ment. From a network operator viewpoint, these flights caused a substantial increase in delays and overall costs at LAX with very little marginal transportation benefit. The combination of competitive pressures to provide more frequency discussed earlier, as well as the fact that a single flight can cause much more delay than it experiences, means that there are little or no natural economic pressures to arrest the trend toward smaller aircraft.

20.1.6 Safety Impact of Scheduling Practices
Perhaps the most compelling argument for a new slot control system is the safety impact of operating at a high demand to capacity ratio. The recent data and analysis by Haynie (2002) indicate that loss of the regulated safe separation distance of aircraft is positively correlated to the aircraft arrival demand to runway capacity ratio (figure 20.5). Table 20.1 shows that ten of the largest airports in the United States have demand to capacity ratios above .6. The next section will further discuss the relationship between airport capacity and separation standards.

20.2 Current Procedures for Allocating Landing Time Slots

20.2.1 Capacity Determination and Safety Standards
There is a long-standing, internationally recognized safety principle that two aircraft should never be on an active runway at any one time. The concern is that the leading aircraft may not be able to exit the active runway for a variety of reasons and the following aircraft must not land until the active runway is clear in order to avoid a potential high-speed collision. In general, aircraft deceleration times vary and larger aircraft approach a runway at a higher speed than do small aircraft, so minimum separation times and runway capacities will vary with aircraft mix.
With the introduction of the Boeing 747 wide-body aircraft into commercial service in the 1970s, the aviation community became aware of a new hazard for smaller, lighter-weight aircraft following very heavy aircraft. The lift required to support any aircraft ultimately gets left in its wake in the form of both turbulence and a set of counter-rotating vortex pairs. Aircraft are generally designed to withstand a significant amount of turbulence, but the coherent induced rolling encounter of a significantly smaller aircraft in the wing-tip vortex of a wide-body heavy aircraft can be fatal.

In the 1970s and 1980s, conservative safe aircraft separation times were estimated (based upon wake vortex knowledge at the time) and established as separation times for adverse weather conditions when air traffic control had responsibility for separation. Generally these times were in excess of the standards-based runway occupancy times. In good weather, when the aircraft pilot has separation responsibility, the pilot is warned when he is following a heavy aircraft and the wake should be avoided (however, the wake vortex is invisible most of the time). Table 20.2 shows aircraft separation time estimates taken from a study on the aircraft mixture and maximum arrival rate at LAX based upon wake vortex separation times (Hansen 2001). This table illustrates that many aircraft pairs should maintain separation times in excess of the ROT separation standard of ninety seconds. In a study for Atlanta airport, Haynie (2001) showed that under certain VFR scenarios, when pilots assumed responsibility for separation, almost 50 percent of the flights had separation times less than the minimum specified by the wake vortex standard. The ability to meet this standard and, at the same time, produce
high throughput, is hampered by the inherent variability in the joint air traffic control/pilot process for spacing aircraft. In particular, the higher the variability in the process, the lower the throughput must be set in order to insure a minimum separation standard is met. Technology, which places greater control in cockpit, exists (Green et al. 2001) (Ballin et al. 2002) to reduce the variance of this process. This technology would significantly increase the effective capacity of airports. However, implementation of this technology requires that the airlines purchase and install new equipment on aircraft and that the FAA certify new procedures. In general, significant benefits to any airline will not be accrued until all airlines are equipped. Thus, there is little incentive for a single airline to make the required investment unless that airline can be assured that all airlines will make a similar investment, and this has so far impeded the introduction of such technology Commission on the Future of the U.S. Aerospace Industry (2002).

20.2.2 Administrative Procedures and Property Rights

The definition of a slot is somewhat ambiguous. In general, the concept refers to the ability to access a resource over a particular time. Title 49 of the United States Code (USC) subtitle VII (49USC41714) defines the term “slot” to mean “a reservation for an instrument flight rule takeoff or landing by an air carrier of an aircraft in air transportation.”

In the United States, prior to 1969, the concept of an arrival or departure slot essentially did not exist. Rather, airlines interested in providing service simply published schedules at the airports of interest and, on a given day of operations, requested access to runways as needed. There were other resources, of course, that had to be arranged

<table>
<thead>
<tr>
<th>Leading</th>
<th>Trailing Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>Small</td>
<td>80</td>
</tr>
<tr>
<td>Large</td>
<td>160</td>
</tr>
<tr>
<td>B757</td>
<td>200</td>
</tr>
<tr>
<td>Heavy</td>
<td>240</td>
</tr>
</tbody>
</table>

Note: Shading indicates wake vortex standard exceeds ROT standard.
to support such services, including gates, ticketing facilities, and baggage handling capabilities.

When the FAA instituted the high density rules (HDR) in 1969 at Kennedy, LaGuardia, Chicago, and Washington’s National, it assumed responsibility for determining the appropriate number of slots and of overseeing their allocation. Slots were divided into three categories: air carriers, commuter airlines, and general aviation. The separate allocation at each of the four airports was accomplished via airport-based scheduling committees, which were granted limited antitrust immunity. The FAA intervened when committee deliberations became deadlocked. Slot ownership was ceded to the incumbent operators at the HDR airports in 1985. However, “use it or lose it” rules were established to ensure that each allocated slot was used. Slot exchange among owners has been allowed over the years.

On April 5, 2000, through the so-called “Air-21” Act, Congress made additional slots available at LaGuardia airport (Federal Register 2000). The restrictions placed on the usage of these slots effectively directed their use toward small aircraft providing access to small communities. By the end of September 2000, there were 192 additional operations scheduled at LaGuardia based on the Air-21 exemptions. Because the additional slots made available were not based on an actual increase in physical capacity, the increase in operations lead to substantial performance degradations in the form of extreme delays and numbers of flight cancellations (Fan and Odoni 2002). To address these performance problems, limitations on the number of Air-21 slots were instituted and these slots were allocated based on a lottery. The lottery is considered a temporary measure and replacement mechanisms are under investigation (Federal Register 2001).

Internationally, slot allocation activities are essentially similar to the U.S. experience. Administrative procedures are used to allocate slots (see DotEcon Ltd. 2001). Generally, there are provisions to encourage new entrants and access to small communities; however, grandfather rights predominate and limit the effect of such provisions. Although there appears to be interest in exploring the use of market mechanisms, there has been little or no use to date. In fact, in the United Kingdom, although the exchange of slots on a one-for-one basis is allowed, buying and selling slots is prohibited. Two IATA conferences, held each year in June and November, provide a forum for airlines to coordinate slot assignments relative to international schedules. At these conferences airport schedule coordinators and airlines confirm and possibly renegotiate slot assignments. Airlines also engage in slot exchanges. These activities are essential in order for airlines properly to coordinate schedules and to optimize ground, maintenance, and other operations. They can continue after the conferences as airlines and airport coordinators continue to refine schedules.

When considering options relative to market mechanisms for allocating slots and, possibly related airport resources, a number of ambiguous legal questions arise. Regional airport authorities and municipalities typically own the airports in the United
States and Europe. Because these authorities are almost always public agencies, they are typically restricted in that their charges for services can only achieve cost recovery. Thus, the prospect of generating revenue streams from auctions that are well in excess of costs may be legally prohibited. In the Unites States, virtually all of these airports have received federal aviation trust funds to partially fund infrastructure investments and have therefore agreed to abide by a number of federal regulations governing access to and the safe operation of the airport. Most major airports have also funded numerous landside infrastructure investments with municipal bond debt financing. Many airlines have long-term leases with the municipal airport authorities on gates that give them exclusive rights to the gates. In fact, in many cases, the airlines have paid for the construction of these gates. The owner airlines can effectively use these long-term rights to exclude new entrants. These local gate ownership arrangements represent a major impediment to the prospect of auctioning gate access.

Currently, one might consider landing fees the charge most similar to a fee one might pay to lease a slot. However, landing fees represent a component of an airport’s revenue stream that is used to recover overall airport costs. Conceptually, this fee pays for the cost required to maintain, and possibly construct, runways, taxiways, and related infrastructure. By contrast, the FAA has exclusive and unambiguous rights to all aircraft use of the airspace. Title 49 of the United States Code, subtitle VII (49USC40103) states, “The administrator of the Federal Aviation Administration shall develop plans and policy for the use of the navigable airspace and assign by regulation or order the use of the airspace necessary to ensure the safety of aircraft and the efficient use of airspace.” This authority is exercised daily with the routine practice of aircraft departure denial under ground delay programs (GDPs). GDPs, the LaGuardia lotteries, and other activities have clearly established the precedent for network-wide government control of scheduled airline flights. Thus, the FAA “owns” the airspace immediately above airport runways and, consequently, has the authority to allocate the use of that airspace.

20.3 Slot Allocation and Reallocation on the Day of Operations

In an ideal world, airport capacity could be partitioned into well-defined slots and market or administrative mechanisms used to determine owners (or renters) of each slot. On any given day, slot ownership would afford an airline with the rights to carry out an operation within the precise time limits specified by the lease or ownership agreement. If the airline failed to exercise this right for any particular slot, then no offsetting compensation would be granted. A variety of factors render this ideal impractical or impossible. Uncertainty on several levels necessitates a more flexible approach. We use the term *demand uncertainty* to categorize effects that can cause flights to fail to meet planned departure or arrival time slots and the term *capacity uncertainty* to categorize
effects that cause changes to the number and/or timing of slots. Examples of factors contributing to demand uncertainty include problems in loading passengers onto an aircraft, mechanical problems, queues on the airport surface or in the air, and en-route weather problems. Examples of factors contributing to capacity uncertainty include weather conditions at the airport and changes in flight sequences that cause the need to alter flight departure or arrival spacing.

In the United States, under normal conditions, there are essentially no controls placed on an airline to adhere to “scheduled slot assignments.” Airlines have total control over when flights push back from their gates and, within the safety constraints imposed by ATC, control over when flights arrive. Within this framework, the stated FAA policy is to provide access to National Airspace System (NAS) resources on a first-come, first-served basis. That is, as aircraft push back from gates, they are placed in queues and given access to departure runways based on their place in the queue. Similarly, flights are placed in arrival sequences as they approach the airspace of their destination airports.

FAA traffic flow management (TFM) procedures in many cases make exceptions to this policy for safety and efficiency reasons. For example, flights routed toward congested airspace with restrictions on flow rates (miles-in-trail) might not be given sequential access to a departure runway in order to delay their arrival to a portion of airspace. On the arrival side, flights can be sequenced to maximize airport arrival throughput using the capabilities of the Center Tracon Automation System (CTAS) (Erzberger 1995). It is noteworthy that IATA guidelines explicitly recognize a decoupling of schedules and the actual timing of operations (IATA 2000): “The Conferences deal with adjustments to planned schedules to fit in with the slots available at airports. This activity has nothing to do with adjustments to schedules on the day of operation for air traffic flow management. The two types of slot allocation are quite different and unrelated.”

In the United States, the most significant TFM adjustments to operations occur during ground delay programs (GDPs). FAA traffic flow managers institute a GDP whenever the anticipated arrival demand is significantly greater than the estimated arrival capacity at an airport. This most often occurs when degraded weather conditions at an airport cause a change from visual flight rules (VFR) to instrument flight rules (IFR). Under IFR, the pilot depends on air traffic control and aircraft instruments for separation and guidance so, more conservative procedures are used reducing capacity.

The FAA has used GDPs for close to twenty years now. Recently, however, the emergence of a new paradigm for TFM has led to significant changes in the implementation of GDPs. This paradigm, called collaborative decision making (CDM), is based on the recognition that improved data exchange and communication between the FAA and airlines will lead to better decision making (see Wambgsans 1996; Ball et al. 2000). In particular, the CDM philosophy emphasizes that decisions with a potential economic
impact on airlines should be decentralized and made in collaboration with the airlines whenever possible. The GDP enhancements introduced under CDM are numerous, and include improved data exchange, better situational awareness tools, and increased flexibility for the airlines. All major U.S. airlines participate in CDM. An extranet connects the airline operational control centers with the Air Traffic Control System Command Center (ATCSCC), and all participants have a common decision support tool, the flight schedule monitor (FSM). The most significant improvements from CDM derive through using different procedures for allocating ground delays. Under CDM, arrival capacity is allocated to the airlines by a procedure called ration-by-schedule (RBS), based on the consensus recognition that airlines have claims on the arrival schedule based on the original flight schedules. In addition, CDM has introduced a new reallocation procedure called compression. This procedure aims to ensure optimal capacity utilization in the presence of delays and cancellations.

Figure 20.6 illustrates the overall allocation process. Note that in addition to RBS and compression, there is a third significant process, cancellations and substitutions, that is totally controlled by the airlines. Under this process, each airline may cancel flights and interchange slot-to-flight assignments for its own flights. Thus, although RBS in concept allocates slots to flights, the cancellation and substitution process effectively converts the slot-to-flight assignment into a slot-to-airline assignment.

The principal output of either RBS or compression is a controlled time of departure (CTD) for each flight in the GDP. Calculation of a CTD is accomplished by assigning a controlled time of arrival (CTA) to each flight and then computing a CTD by subtracting the estimated enroute time from the CTA. The assignment of CTAs by RBS can be viewed as a simple priority rule. A set of arrival slots consistent with the degraded capacity is created. Using the OAG arrival order as a priority order, each flight in the OAG is assigned the next available arrival slot. If this rule was applied to all flights and there were no cancellations or substitutions, then the flights would arrive in their original sequence but generally later. There are two groups of flights exempted from this basic allocation scheme: (1) flights that are currently airborne (clearly these cannot be assigned ground delay), and (2) a set of flights characterized by the distance of their departure airports from the GDP (arrival) airport (see Ball and Lulli 2002). The motivation for the second exemption is to include in the allocation scheme flights close to the

Figure 20.6
CDM resource allocation.
airport and to exempt flights further away from the airport. Flights a greater distance away must be assigned ground delays well in advance of their actual arrival, for example, four or five hours. So far in advance of arrival, there tends to be a greater level of uncertainty regarding weather and, as a consequence, airport arrival capacity. There is a significant likelihood that these flights could unnecessarily be assigned the ground delay. Thus, distance-based exemptions constitute a mechanism for improving expected airport throughput.

After a round of substitutions and cancellations the utilization of slots can usually be improved. The reason for this is that an airline’s flight cancellations and delays may create “holes” in the current schedule; that is, there will be arrival slots that have no flights assigned to them. The purpose of the compression algorithm is to move flights up in the schedule to fill these slots. The basic idea behind the compression algorithm is that airlines are “paid back” for the slots they release, so as to encourage airlines to report cancellations.

To illustrate the compression algorithm, let us consider the example in figure 20.7. The leftmost figure represents the flight-slot assignment prior to the execution of the compression algorithm. Associated with each flight is an earliest time of arrival, and each slot has an associated slot time. Note that there is one cancelled flight. The rightmost figure shows the flight schedule after execution of the compression algorithm: as a first step, the algorithm attempts to fill AAL’s open slot. Because there is no flight from AAL that can use the slot, the slot is allocated to UAL, and the process is repeated with the next open slot, which, using the same logic, is assigned to USA. The process is repeated for the next open slot, which is assigned to AAL. The AAL receives the earliest slot that it can use.

Figure 20.7
Execution of compression algorithm.
The compression algorithm results in an exchange among airlines of the initial RBS allocation. One could interpret this result as a reallocation. However, there is also a natural interpretation of compression as an inter-airline trading or bartering process (see Vossen and Ball 2001). For example, in figure 20.7, American Airlines “traded” the 1600–1601 slot, which it could not use, for the 1607–1607 slot, which it could use, and United Airlines reduced its delay by trading the 1604–1605 slot for the earlier 1602–1603 slot. Vossen and Ball show that a bartering process can be structured so as to produce a result essentially equivalent to compression. This view of compression suggests many possible extensions. For example, Vossen (2002) defines a more complex two-for-two bartering mechanism and shows that there is a substantial potential for improved economic performance from using this mechanism. Probably the most intriguing enhancement is to allow “side payments” with any exchange as well as the buying and selling of slots. Section 20.8 discusses and analyzes such a process, which can be viewed as a day-of-operations aftermarket. It is noteworthy that experience with the current process can provide insights into the design of future market mechanisms and, also, that the CDM IT infrastructure can potentially serve as a basis for implementing such a market.

20.4 Objectives and Fundamental Issues Associated with the Design of Auctions within Aviation

The concept of creating a market-clearing mechanism for the allocation of takeoff and landing rights at airports is not new. Rassenti, Smith, and Bulfin (1982) provided the first general package-bidding framework for slot auctions. They suggested a combinatorial auction design that allowed bidders to be able to couple takeoff and landings in a single bid of the form “I want to purchase the right to take off from airport A at time X and also have the right to land at airport B at time Y for a total price of $Q.” Even more complicated expressions of uses and related values may be needed. For example, an airline may need to express a collection of arrivals and takeoffs in a single bid to ensure that arrivals at a given airport are coupled with a takeoff from that airport and each takeoff is coupled with a landing at some other airport. The need for alternative collections, describing different business plans, also argues for a bidding language that allows bidders to say that two packages are mutually exclusive (the bidder is willing to win either package A or package B, but not both). With this type of expressive language, a bidder does not experience the concern that he will win only part of what he needs to create a commercially viable schedule of flights, or conversely, that he will win more than expected (the “exposure” problem) (a very detailed and excellent account of the issues and benefits associated with auctions for slot allocation appears in DotEcon, Ltd. 2001). We begin this section with a short summarization of some of these issues.
The current process for slot allocation whereby airlines have landing and takeoff rights grandfathered for decades at capacity-limited airports leads to inefficiencies, inertia, and distorted incentives (e.g., use available slots so as to keep competition at bay). When slots are allocated through an administrative process, the cost of ownership is only the cost of acquiring the slot. This is true whether there are many competitors wanting this slot or whether only one. When the slot is scarce, the decision of assigning new slots must be somewhat subjective and vulnerable to legal challenge. Such decisions often limit entrance or expansion of new carriers into a given market because they have less ability to impact the outcome of the administrative process.

By contrast, there are a number of benefits to the airline industry to using an administrative process. Grandfathering slots (a) allows a maximum degree of certainty over future slot holdings, thereby helping an airline with its long-term investment decisions; (b) makes the job of determining the allocation less cumbersome, because it is done infrequently, and (c) helps the airline do long-term planning, because it can predict most of its competition over long periods of time. Finally, the management of the overall airspace is less complex because the activities at a given airport, or over the entire airspace, are predictable and change little over time. Each of these benefits, however, also highlights how such allocation impedes competition and change over long periods.

We believe that using an alternative market-based allocation system, such as auctions, for the allocation of slots for a finite specified period of time, is more likely to provide a system that is efficient, that is, produces an allocation that results in maximizing the benefits to the consumer and the economy by allocating them to those that can generate the greatest benefit from their use. The knowledge that the slots will be re-auctioned in the future assures that the industry must actively evaluate the market and the value of ownership of such slots.

Because an auction allocates items by determining the bidder that will pay the most for the good, the auction-clearing price resolves the conflicting demands on the use of the resource without subjective arbitration. Another benefit of the use of auctions is that the process is both transparent and is less open to legal challenges.

One argument against auctions is that they are an easy mechanism for the government to raise revenues. Auctions do raise revenue, but the revenues raised are no more than a reflection of the market value associated with a scarce resource. How the revenue generated is used warrants discussion. It is our belief that the revenue can help pay for the infrastructure necessary to safely administer and expand airspace use. Because such costs must be incurred somehow, one can argue that the revenues generated are in lieu of other taxes that would be required if they were not generated from the auctioning of slots. However, we note that careful auction design often works not to maximize the revenue from high value bidders, but rather chooses objectives that encourage new entries and discourages or disallows monopolistic control over markets.
Thus, the revenue generated is a consequence of ensuring efficient outcomes but need not generate any more than the minimum necessary to do so.

There are a number of design issues that one must consider for an auction that allocates slots at airports. We discuss many of these issues prior to providing the details of a basic auction framework.

Capacity issues. Because airport slots cannot be considered separately from the other resources that will be used with the slot, one must consider runway, gating, baggage, and terminal capacity when determining the number of slots that might be available within a given time period. One must also know how the slots are to be used, that is, what is the distribution of aircraft types that will use the slots, because such distribution impacts the capacity of the system. The number of the items (e.g., arrival slots between 9:00 am and 9:15 am) to be auctioned may vary depending on the type of aircraft that will use these arrival slots (see section 20.2.1). Thus the number of slots may be dependent on demand characteristics that are unknown prior to the auction. Thus, the auctioneer—when determining winners—must consider the physical limitations of the airport when choosing a feasible allocation set.

Property rights. Currently, airlines receive rights that they expect to be able to renew indefinitely if they adhere to conditions of usage specified by the FAA. In fact, these “use it or lose it” requirements have encouraged carriers inefficiently to use allocated slots in order to assure that they would continue to own them in the future and to preclude competition from other carriers. Although allocation exercises take place semiannually, the turnover of slots is very small. When airports expand, new slots become available and an administrative process measures the value of providing these slots to new entrants versus expanding the slots of the major existing carriers at that airport.

Although carriers currently enjoy what they consider “perpetual right of usage,” this usage does not confer any future property rights. Indeed, the law indicates that the DOT has exclusive rights to determine the takeoffs and landings at all airports in the continental United States. Because the government has exclusive airside rights, we believe that auctioning off arrival time slots at airports would provide a mechanism for acquiring the infrastructure needed to grow the industry (new technology allows closer separation and safer skies) while also assuring a fair mechanism for growth of smaller carriers and the entrance of new carriers.

Property rights would need to be carefully specified. One approach would allow the buyer of a slot to have exclusive use of the slot during a given time window (e.g., within a fifteen-minute period) every day. The owner of this slot would keep this right over a relatively long period, thereby providing the owner with the ability to create long-term plans and schedules. For example, if 20 percent of the slots were auctioned each year, then the duration of the property rights for any given slot could
be a five-year period. Research to determine the optimal period for the right is necessary.

In addition to these yearly auctions, we perceive the need for a secondary auction that would allow trades of slots among carriers. Thus, the carrier acquires an assumable lease for the given lease period. That carrier has the right to trade or sell this slot for any subset of the leasing period to any other carrier contingent upon regulatory conditions specified by the DOT/FAA (e.g., proof that the buyer-carrier can operate in this market safely and that this carrier adheres to any limitation on market share).

Finally, there is a need for a third trading mechanism for the day of operations. This market is a classic "trade" exchange among carriers having rights to take off and land at a given airport to accommodate issues of weather, maintenance, and other problems that cause planes to be delayed in departure or landing.

Thus, if the FAA decides to allocate long-term rights to departures and landings through a market clearing mechanism, then the FAA must also stipulate how carriers can trade these slots during the period of that lease. In sections 20.5, 20.6, and 20.7, we will discuss the differences in auction design necessary for each of these three situations.

Valuation issues. Currently, the value of a takeoff or landing slot is unknown. This is consistent with many other government administrative processes. For example, prior to the Federal Communication Commission auctioning off spectrum rights, the value of this spectrum was unknown but perceived to be quite valuable. When the first personal communications service (PCS) auction was held (an auction for wireless cell phone communications) and brought over $7 billion into the U.S. Treasury, the value of spectrum was no longer questioned. Similarly, because the values of airline slots are not well understood at present, we believe that one should choose an auction design that allows price discovery.

Market power. Auctions allocate markets efficiently when there is sufficient competition within the market. In this case, competitors bid against each other and the market is allocated to the bidder that values the market the most and is, therefore, willing to pay the associated price of acquiring the market. However, for markets where the goods are scarce and where the goal is to assure competition within the industry, the auction rules must ensure that an airline does not bid based on the airlines' willingness to buy a monopoly. Without rules to preclude this situation, an auction can lead to insufficient monopolistic control of an airport or region by an airline. One can avoid this pitfall by placing ownership restrictions both on the entire airspace, within any given airport, and even within an airport by time of day. Carriers may need a certain amount of activity at given airports to optimize their hub/spoke system, but no airline needs to control a majority of the airport. Rules similar to those imposed by the FCC on spectrum can control the total ownership of slots within regions, airports, and within time windows.
Implementation issues. There must be a transition period that moves the airline industry from an administrative process to a market-clearing process. As discussed earlier, we would expect only some small percentage of the slots to be auctioned in any given year; our initial suggestion is 20 percent per year. The question of where to start must be studied (see Rothkopf and Bazelon 2003 for a general approach to this problem). It would seem quite attractive to start with the most congested airports, thereby relieving some of the safety and delay issues that exist at these airports, most notably LaGuardia. Similar logic suggests auctioning slots at those airports during the most congested time interval periods. We expect that peak-demand slots will command higher prices than off-peak hour schedules. Choosing them as the first to be auctioned will force airlines to reexamine the sizing of flights that take off during these high-demand times. Thus, we expect that, although flight operations might decrease (for safety reasons), the number of passengers being serviced during these time periods may remain the same or increase. Similarly, the less demanded flights are likely to move to alternative times where it makes sense to have smaller planes taking off and landing.

We emphasize that the definition of a "slot" is either a takeoff or a landing within a given time interval. This "slot right" provides the airline with the right to schedule a published arrival or departure during that time window. We believe that a "time window" of fifteen minutes is reasonable given the physical limitations of aircraft movements. A larger window could allow airlines to "bunch" takeoffs and landings into a smaller portion of this larger window, thereby resulting in significant delays and safety concerns (e.g., if the window were for one hour, then airlines might still list most of the departures to take off during the first fifteen minutes of this period).

If one "wins" a slot in this auction, then one must also acquire commensurate rights to terminal space, for example, ticketing, baggage, and gating facilities. Thus, it is essential that the winner be able to obtain such rights, for example, by paying the "going rate" for these facilities as computed based on the current long-term contracts with the local airport authority. Dominant carriers have historically limited rivals from entering the market by limiting the available gates at the peak demand periods. When dominant carriers lose their ability to control gates and ticketing counters, competition during these periods is likely to increase at capacity-limited airports. The gradual transition over a five-year period will allow dominant carriers to continue to have their hub presence, as no more than 20 percent of the flights at the airport would change during a given year.

We emphasize that in order for a slot market mechanism to work, one must ensure that open, fair access to complementary airport resources is provided. All must be linked in order for a successful market exchange.

In the next few sections, we highlight some of the specifics of auction design relevant to this application.
20.5 Design Principles and Research Questions for Long-Term Lease Auctions

When considering the design principles for the long-term lease auction, one must first be certain that all property rights are well defined. Such rights must include the length of the right (e.g., for x years), the right itself (arriving at runway y at airport A between x and y time on an aircraft of size b), the transfer rights, and the obligations (safety, adhering to restrictions on market concentration, etc.). One must also determine what happens if the airline cannot use the slot at the time allocated. We are presuming that the airline must either cancel the flight or bid in the same-day auction for a different time slot. We also note that rules must specify what happens if the airline wishes to substitute an alternative aircraft type into that slot. We only mention these “same day” issues here because any ambiguity in the overall process can create bad outcomes. Similarly, rules that specify the maximum amount of slot ownership at any airport, region or globally, must be carefully considered. Once property rights have been completely and unambiguously specified, a one-sided combinatorial auction can be designed. This auction design is one-sided because the U.S. government is the seller and is selling a collection of slots. Thus, there is only one seller and multiple buyers.

Because the success of an auction design is dependent on all of the details “fitting,” we next present a “straw man” for discussion and study.

20.5.1 General Framework

We believe that the overall framework for this auction should be a simultaneous multiple round ascending bid auction. Because the items being auctioned are scarce commodities with both private and common values (i.e., the value to a buyer is based partially on the value that others place on this item and partially based on the buyer’s own business plan), there is a strong need for price discovery. Such auctions also have the added attribute that they close at slightly over second highest prices. Because all items are awarded simultaneously, buyers can alter their business plans as they collect information about prices and competition among slots. Because of the complexity of an airline’s overall business plan, there is a strong need for an expressive language that allows bids to be treated as mutually exclusive.

Because there have been few combinatorial auctions, we believe that careful study—both empirically and computationally—is necessary to assure its success. We present some of the components below:

1. Activity. We argue that activity rules similar to those set by the FCC in simultaneous multiround auctions be considered.
2. Bidding language. The literature presents a number of expressive bidding languages. The general XOR language allows complete expressivity but at the cost of requiring the bidder to place an extraordinary number of bids. Alternatively, other bidding languages are compact but only appropriate for specific kinds of bidders. (Ledyard
et al. 2002) describes the need to express mutual exclusive bids based on his experience in transportation auctions. For more on bidding languages, see Nisan, chapter 9 of this volume.

3. Bidder’s aid tools. A number of tools would make a package bidding auction easier. They include tools that a) help the bidder estimate a competitive price for his package, b) help the bidder determine his best bids based on his business plans and the current prices of the various slots, and c) help the bidder to identify “partnering” bids (i.e., bids that fit with his bid to create a winning set).

4. Pricing. In a combinatorial auction, it is hard to infer the prices of the individual pieces from the winning prices of packages. Yet, this information is critical to a bidder being able to create new packages that have some hope of “winning” in future rounds. There are a number of papers that discuss both linear pricing and nonlinear pricing (Hoffman et al., chapter 17 of this volume). Pricing information is critical to both the overall outcome (efficiency) and speed of the auction.

5. Winner determination calculations. Because a slot allocation auction is likely to have many objects auctioned simultaneously, the size of the winner determination problem can get very large. The federal government must weigh the benefits of speeding up these calculations against the issues associated with fairness and transparency. Indeed, the FCC chose not only to solve the winner determination problem to proven optimality but also to choose among all tied solutions randomly. These calculations are expensive, but may be necessary to assure that the results of the auction are not contested in court. A compromise may be that the auction performs less careful optimizations (e.g., to within 1 percent of optimality) in the early stages of the auction, and more careful optimizations late in the auction. We also note that the winner determination problem may be harder than for other auctions because additional constraints that assure a safe distance between planes and restrict carrier concentration may be required.

6. Length of time bids are kept. In order to assure sincere bidding, we believe that bids should be kept active throughout the auction. This rule plays substantially with the rules about expressive languages, in determining the complexity of the winner determination problem. More study must be done to understand how they interact.

7. Setting the minimum bid increment. The minimum bid increment determines the allowable new bids for the next round. If this increment is set too small, then the overall length of the auction will be extended significantly. If, on the other hand, the increment is too large, efficiency can be lost. Smoothing procedures that use a relatively large bid increment when there is much competition and a relatively small increment when there is little competition to consider.

8. Proxies. Many auctions employ either an optional or a mandatory computerized facility that bids for the bidder within an auction, called “proxies.” Proxies allow bidders to participate in multiple rounds without the cost of continuing to monitor the system. Forced proxy bidding can eliminate much signaling and gaming, because the
proxy will always engage in straightforward bidding (see Ausubel and Milgrom, chapter 3 of this volume, for details). We believe that for the slot-allocation auction, such designs would require modification to allow “stages” whereby bidders could re-adjust their maximum bid prices and set of bids. With stages, eligibility and activity rules would need to be imposed. Little experience with such an auction system exists, and careful study of these systems is warranted due to their ability to reduce disruptive bidding.

9. Stopping rule. In a multiple round auction, the stopping rule must be coordinated with the eligibility and activity rules of the auction. The rule that the auction ends when no new bids are placed encourages activity. However, in package bidding, there can be many rounds with new bids but with little or no change. An alternative with promise is to consider merging an ascending bid auction with a “last proxy stage.” In this stage, bidders provide the “maximum bid amount” for every bid they might wish to win and the proxy works with these bids to determine the winners.

Clearly, for an application as critical as slot allocation, one must be careful in choosing the auction design. The problem is sufficiently important to warrant extensive experimental and computational study of the alternatives.

20.6 Design Principles and Research Questions for Medium-Term Exchange of Slots

In order for a market-clearing strategy to work, airlines must have the right to reassign their lease to another airline for the remaining lease period. The only regulatory oversight of such transactions would be to insure that airlines do not, by such transactions, violate any of the rules of aggregation originally specified for the long-term auction. Thus, the FAA would specify rules restricting the overall leasing of slots at (a) a given airport, (b) within a given region, and (c) throughout the U.S. airspace. Trades must not violate these rules. Within this overall restriction, the industry can determine the market trading mechanism that they feel most suits their needs.

Because the FAA should specify the rights associated with a slot-allocation lease (takeoff or landing, gate access, ticket space, baggage-claim area, duration) and the obligations associated with that right, any entity in possession of such a right is free to transfer this right to another entity as long as that new entity can comply with the obligations imposed on the slot holder. We believe that airlines should be free to trade these rights through all forms of trading. These trades can then be performed by bilateral negotiation or through an organized market (auction) mechanism. If the airline industry chooses an auction mechanism, the choices are large: the mechanism can be a simple one-sided exchange mechanism whereby one lists slots for sale, and an auctioneer then sells these for the airlines. Alternatively, one can create a two-sided combinatorial exchange whereby one can create packages of items for sale where items are exchanged either (a) whenever a seller’s ask price “matches” a buyer’s bid price, or (b)
at the end of a full combinatorial exchange whereby bidders provide complicated buy and sell bundles and trades take place simultaneously with the surplus from those trades being allocated based on a given set of rules (a summary of issues associated with combinatorial exchanges appear in Parkes et al. 2001; Wurman and Wellman 2002; Ledyard et al. 2002).

The auction design for this application is likely to evolve over time. We believe that as long as property rights are established and the industry is free to exchange these rights in the market place, the industry will determine the exchange that works best.

We now move onto the issues associated with what occurs on day of operations, given the fact that weather conditions, mechanical breakdowns, and other operational conditions might significantly alter an airline’s ability to adhere to its published schedule.

20.7 Design Principles and Research Questions for Day of Operations Slot Exchange

The current CDM exchange mechanism, the compression algorithm, together with the CDM data communications infrastructure provides a firm foundation for structuring and understanding a possible “day of operations” slot exchange market. Viewed most simply, one “only” needs to convert this non-monetary exchange into a monetarily based exchange. Prior to pursuing this approach, it is worthwhile to step back and consider the basic premise for such a market so that one can consider more fundamental changes.

20.7.1 Issues to Consider in Evaluating a Market-Based Day of Operations Exchange

Currently slot rationing and slot exchange are employed for arrival slots during periods when the arrival capacity at an airport is reduced usually as a result of poor weather conditions. These operations occur before the departure of the impacted flights. The arrival slot allocated to each flight is converted into a departure slot by subtracting an estimate of the en-route time. The difference between the revised departure time and original departure time of a flight is the ground delay assigned to a flight. Thus, control is ultimately exercised through the assignment of ground delays, whereas planning and allocation are carried out in terms of arrival slots. No constraints are placed on the revised departure times, so there is an implicit assumption that departure capacity is unconstrained. When considering more general market structures, some questions naturally come to mind.

Should a Day of Operations Slot Exchange Market Only Exist During Conditions of Reduced Arrival Capacity? Air carriers routinely enter into conditions of irregular operations. Under such conditions there can be large deviations from normal schedules, so the set of required slots can substantially deviate from the set “owned” by the
carrier. Clearly this suggests the usefulness of market mechanisms to achieve a reallocation under a broad set of circumstances. On the other hand, today it is only deemed necessary to carry out an explicit allocation during times of reduced capacity because relatively few delays result from exercising a basic first-come, first-served rule. It seems clear that some expansion over the current practice is warranted; however, the extent of such an expansion deserves additional consideration.

Should Both Arrival and Departure Slots be Exchanged in the Market? At this time it is difficult to provide a definitive answer to this question. It certainly is clear that there are times of significant congestion with respect to departure slots, which strongly suggests the need for allocation mechanisms. By contrast, the notion of dynamically coordinating NAS-wide arrival and departure slot allocation, for example, through a NAS-wide auction with package bidding, would seem to be extremely onerous and perhaps overkill. Thus, we will proceed here with the development of a day of operations slot exchange for arrival slots. At the same time, we view this as an open question worthy of study.

Should the Basic Control via Departure Times Remain the Same or Should Other Control Mechanisms be Used? The current approach to controlling arrivals may seem rather convoluted, in that arrival slots are allocated and this allocation is implemented by controlling when flights depart. The logic of this strategy might seem especially dubious when one considers the high degree of uncertainty associated with departures and en-route traffic flows as described in section 20.3. In fact, one of the goals of CDM development activities has been to migrate to the so-called “control by CTA.” This concept states flights should be given a CTA (controlled time of arrival) and that the responsibility to meet the CTA rests with the airline/pilot. No restrictions would be placed on departure times. In fact, we do not believe this to be a desirable method of control for CDM, nor do we believe it is desirable under a future day of operations auction scenario. The principal disadvantage of such an approach rests in the fundamental difference in how to handle flights on the ground and flights in the air. Once a flight is airborne, by necessity, it must be granted certain priorities and privileges. For example, the fuel on board would represent a hard constraint on the degree to which it could absorb airborne delay. Of even greater concern is that prospect that if significant penalties were attached to either early or late arrivals into the terminal area, then it is likely that the added pressures placed on pilots and air traffic controllers to meet certain time windows would lead to a degradation in safety. Thus, our answer to this question is that the current approach of allocating arrival slots and controlling access to those slots via departure time modifications should be continued.

To summarize, we conclude that a basic “conversion” of the current system to a monetarily based system is the best alternative to pursue at this time.
20.7.2 Value Proposition and Need

Section 20.1 of this chapter argued the merits of the general use of market mechanisms within air traffic management. Here we would like specifically to consider whether market mechanisms might provide significant added value when compared with the current CDM procedures.

If one examines the two types of offers associated with the bartering model described at the end of section 20.3 as well as figure 20.8, it becomes apparent that the current slot exchange procedure addresses a very specific, limited scenario. That is, compression and/or the bartering process are driven by one or more slots that have become unusable by their owner-airlines. As figure 20.8i illustrate, airline A owning an unusable slot, [x], places a value of $0 on [x] but say a value of $1,000 on a slightly later slot [y]. By contrast, airline B might place a value of $800 on [y] and a value of $900 on [x]. An exchange of ownership provides an added value of $1,000 to A and an added

Figure 20.8-i

![Diagram](image)

Economic surplus:

\[(1000-0) + (900-800) = 1100\]

Figure 20.8-ii

![Diagram](image)

Economic surplus:

\[(450-500) + (2000-1600) = 350\]

Figure 20.8

Illustration of value proposition for day of operations market for slot exchange.
value of $100 to B for a total economic surplus of $1,100. It would seem clear that many other types of scenarios are not only possible but also likely. In figure 20.8ii, airline A’s flight has a relatively small number of passengers and airline B’s has a much larger number, leading to A’s valuations of \([x]\): $500, \([y]\): $450, and B’s valuations of \([x]\): $2,000, \([y]\): $1,600, for a total economic surplus of $350. In figure 20.8iii, by switching from slot \([y]\) to slot \([x]\), airline B is able to avoid a timing out of its crew, thus saving a much larger incremental amount than A incurs. The second and third scenarios are quite realistic, but would not be addressed under the current CDM procedures.

Recent research on non-monetary extensions of the current CDM exchange mechanism provides further evidence of the potential value of a day of operations market. Vossen (2002) describes, an extension from the current one-for-one bartering model, compression, to a two-for-two bartering model. Experimental results show that airlines can derive substantial additional value from using such a system.

Because of the high degree of uncertainty in daily NAS operations there is always a need dynamically to adjust schedules. The evidence just provided clearly indicates that during time of severe or even moderate disruptions, substantial value can be derived from a day of operations slot exchange market.

20.7.3 Design Principles and Research Questions

We now discuss fundamental questions that must be addressed in designing a day of operations exchange for arrival slots. Based on the preceding discussion, we will specifically address the conversion of the current non-monetary CDM exchange process into a monetarily based exchange. Thus, the exchange will allow airlines to trade rights to arrival slots on a particular day of operations. The right to an arrival slot is translated into the right to depart from an origin airport within a specified time window a certain amount of time in advance. The departure time window will be based on an estimated en-route travel time from the origin to the destination airport, which in turn is based on the flight plan filed by the airline.

Exchange Markets A key property of these slot-trading markets is that each airline is potentially both a buyer and seller. In fact, the natural extension of the current exchange system suggests simply adding the possibility of side payments to the current trades. Of course, once exchanges with side payments are supported, outright slot buying and selling would seem to be a small additional step. One might then ask whether the entire process could be simplified by only supporting buy/sell transactions. Thus, each trade illustrated in figure 20.8 would be replaced by two individual buy/sell transactions. In a static environment with no budget constraints, complete information, and equilibrium prices this would probably be reasonable. However, during the trading process, each airline will be managing a flight schedule and will generally be seeking a
set of slots to provide high quality service for some subset of its flights. With this in mind, in a dynamic environment, few airlines would accept the uncertainty of executing separate sell and buy transactions in order to reduce the delay on an important flight. Thus, we feel it is essential that the market support true exchange transactions. This is, of course, equivalent to supporting conditional buy/sell transaction, for example, ‘‘I will only sell slot x if I can buy slot y so that my net payment is no more than $UU.’’ Unconditional buy/sell transactions should also be supported.

Package Bidding In general, airlines will be interested in insuring good performance for a set of flights. Furthermore, the relative position of groups of flights can be of great interest especially in the context of airline banking operations. The results of Vossen (2002) show that the use of complex—for example, two-for-two, trades—can lead to substantially improved performance under certain assumptions. These facts point to the possible advantages of exchanges involving sets of slots. Although such a system is worthy of study, we do not see clear evidence of a need. For example, it is likely that an exchange supporting side payments would achieve performance improvements over a one-for-one bartering system at least as good as those achieved by the two-for-two. That is, the added flexibility provided by two-for-two trades might not be necessary if side payments are allowed. We certainly do not wish to absolutely rule out package trades, but only suggest that there is not obvious overwhelming evidence of their merit.

Dynamic Bidding vs. Discrete Cycles Currently the slot exchange mechanism, compression, is executed periodically, for example, every half hour. A more dynamic, transaction oriented system (slot credit substitution) has been accepted by the CDM constituency and has recently been brought into operation. Similarly, in the case of a slot trading market, either or both of these options could be employed. A transaction-based system would operate in a manner similar to a stock exchange. Such a system would give airlines immediate feedback on proposed trades. Fast response to such proposals could help improve the overall timeliness of airline operations. A system based on discrete cycles could potentially lead to better system-wide performance in that large sets of offers would be considered simultaneously giving a larger feasible region over which to optimize. We do not see a clear resolution of this issue and suggest it as a topic for further research.

20.8 Conclusion

Airport arrival and departure slots at certain critical airports have become scarce commodities that have substantial intrinsic value. In spite of recent downturns in demand for air transportation, demand for the most desirable slots remains greater than supply.
Further, there is little doubt that this condition will remain in the near term and most likely will worsen in the long term.

The effective provision of scheduled air transport services requires the acquisition of multiple coordinated slots as well as related airport resources, including access to gates and terminal facilities. Complementary slots are required both at a single airport and at multiple airports.

In the United States, the FAA has statutory authority to control access to the airspace and consequently has authority over the allocation of slots. At many airports, certain airlines hold implicit or explicit grandfather rights to certain slots. Airport resources, most notably gates, are typically owned and managed by local public airport authorities. However, in many cases, airlines own long-term leases to gates. Slots cannot be effectively used without corresponding gate resources, so any approach to slot allocation must allow for the allocation or reallocation of corresponding gate resources.

At many airports, the airport capacity, that is, number of available slots, depends on the weather. This dependency implies a high degree of “supply” variability and uncertainty. Variability in a variety of airline and air traffic control processes makes it difficult to achieve precise timing in the delivery of aircraft to departure and arrival slots. This “demand” uncertainty coupled with the supply uncertainty make it necessary to employ a flexible approach to the rights associated with slot ownership on a particular day of operations. Furthermore, a day of operations reallocation or exchange of slots can produce substantial improvement in overall system and market efficiency. Such a reallocation is currently used under the collaborative decision making procedures for planning and controlling ground delay programs.

The various circumstances of the aviation slot allocation setting suggest the possible use of three types of market mechanisms. First, an auction of long-term leases of arrival and/or departure slots at capacity constrained airports. Second, in order to refine the initial allocation and achieve market efficiency, a market that allows inter-airline exchange of such long-term leases. Third, a near-real-time market that allows inter-airline exchange of slots on a particular day of operation.

The absence of an effective slot allocation mechanism has led to the gradual degradation of safety levels as well as instances of excessive delays. The use of market mechanisms offers the prospect of addressing these issues as well as providing a number of other economic benefits, including use of existing slots by air carriers who can most productively make use of them, easier entry into markets by new and emerging carriers, breaking up monopolistic “fortress hubs,” and disclosure of true market value of slots. Of course, auctions of long-term slot leases will generate additional revenue. This most naturally should be used to invest in NAS infrastructure and aircraft equipage. Identifying funds or economic necessity for such investments has been difficult in the past.

The successful use of auctions for telecommunication spectrum, energy, and other commodities provide valuable insight into how to design auctions for NAS resources.
Furthermore, this experience provides ample evidence that effective auctions can be designed and implemented in the aviation setting. A number of issues and problems need to be addressed before effective auctions for NAS resources can be designed. These include determining the number of slots offered per time period at an airport, defining the property rights associated with slot ownership, transition issues related to current implicit and explicit airline property rights, and handling the need for airlines to acquire groups of slots and related airport resources, through package bidding and/or after-markets. Auction design for both long-term slot leases and for slot exchange on the day-of-operations, although fundamentally similar to other cases previously tackled, present a number of challenges, some of which represent interesting research questions.

We believe that market mechanisms should play a fundamental role in any comprehensive approach to the management of an air transportation system. Furthermore, such mechanisms show strong promise for improving the safety, delay performance, and economic efficiency of today’s NAS.

Acknowledgments

The work of the first author was supported in part by NSF Grant: ITR0205489. Many of the ideas for this chapter grew out of the workshop, “National Airspace System Resource Allocation: Economics and Equity” organized by the authors. The workshop was supported by George Mason University, NEXTOR, the National Center of Excellence for Aviation Operations Research, and the University of Maryland.

References

